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Abstract
In the context of nonlinear scattering, a continuous wave incident onto a
nonlinear discrete molecular chain of coupled oscillators can be partially
absorbed as a result of a three-wave resonant interaction that couples two
HF-waves of frequencies close to the edge of the Brillouin zone. Hence both
nonlinearity and discreteness are necessary for generating this new absorption
process which manifests itself by soliton generation in the medium. As a
paradigm of this nonlinear absorption we consider here the Davydov model
that describes exciton–phonon coupling in hydrogen-bonded molecular chains.

PACS numbers: 02.60.Cb, 05.45.−a, 45.05.+x

1. Introduction

The scattering of waves becomes extremely rich when nonlinearity comes into play, and one
of its most fundamental effects is soliton generation which results in energy localization and
propagation. For instance incident radiation on a two-level medium at the resonant frequency
can be totally transmitted, instead of being absorbed, a property described in [1] as self-induced
transparency. It results from the nonlinear coupling of radiation with medium population, a
mechanism which generates the solitons, vectors of energy transmission.

Other interesting processes of nonlinear wave scattering are two-photon propagation,
second harmonic generation and stimulated Raman scattering. In the last case, the nonlinear
interaction induces (laser) pump depletion and phase effects result in Raman spike generation
(short duration pump repletion) [2]. Although Raman spike generation is not a solitonic effect,
here also nonlinearity is fundamental tool [3].

Recently discovered, nonlinear supratransmission [4, 5] is a nonlinear scattering process
where a totally reflective medium switches to high transmissivity above some threshold because
of nonlinearity. The bifurcation has its origin in a nonlinear instability [6] which has a wide
field of application in generic nonlinear evolutions [7].

Particularly interesting is the application of this concept to the scattering of a continuous-
wave laser beam incident onto a Bragg mirror which switches from total reflection to
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transmission by means of gap soliton generation [8, 9]. It has been demonstrated that the
switch is a manifestation of nonlinear supratransmission which has in particular allowed the
computation of an analytic explicit expression of the intensity flux threshold [10].

We are interested here in the concept of nonlinear absorption where a medium, transparent
to incident radiation in the linear regime, can become absorbent under the contribution of
nonlinearity which is due here to coupling of waves of different nature. Such is the case with
the Davydov model [11] describing the coupling of high frequency optical phonon waves to low
frequency acoustic waves. A generic field of application of the Davydov model is crystalline
acetanilide (C6H5NHCOCH3) where the acoustic wave represents the hydrogen bond between
adjacent molecules, while the optical phonon wave represents the C=O stretching (amide-I
mode). This model has been widely studied in its stationary limit where the hydrogen bond
is supposed to have a time response much longer than the high frequency C=O stretching.
In that situation the resulting simplified model is the nonlinear Schrödinger equation that has
been used to interpret the anomalous IR-absorption band by soliton generation [12].

The Davydov model has been recently re-examined in the context of resonant two-wave
interaction where a rigorous multi-scale analysis transforms the discrete model to a continuous
integrable partial differential equation which keeps the fundamental wave coupling effect and
possesses multi-soliton solutions [13]. This two-wave resonant interaction process takes into
account an incident high-frequency optical phonon wave that resonates with the low-frequency
acoustic wave as soon as the HF-wave group velocity equals the LF-wave phase velocity. This
is the Benney criterion [14] that has revealed its efficiency through numerical simulations of
the Davydov model [15].

The two-wave resonant process assumes no backward propagation and thus neglects
the multiple reflections due to the periodicity of the crystal. We consider here a three-wave
interaction process that couples the incident optical phonon wave both to the acoustic excitation
and the reflected optical phonon wave. We shall discover that an incident and a reflected high-
frequency wave can cooperate resonantly with a low-frequency acoustic wave thanks to the
discrete nature of the basic model.

We will demonstrate that this scattering process allows for absorption of incident radiation
by a purely nonlinear effect that generates a three-wave soliton in the medium. The nonlinear
effect is effectively an absorption as a part of the incident energy flux is transferred to the
medium.

2. Three-wave interaction in the Davydov model

2.1. Basic model

Our starting point is the Davydov model [11] for the eigenstate an(t) of the amide-I
excitation (the corresponding dynamical variable represents the C=O stretching) coupled
to the dynamical variable βn that represents the longitudinal displacement along the hydrogen-
bond chain. It reads

ih̄ȧn = [E0 + W + χ(βn+1 − βn)] an − J (an+1 + an−1), (1)

Mβ̈n = κ(βn+1 − 2βn + βn−1) + χ(|an|2 − |an−1|2), (2)

where M is the mass of the peptide group, K is the spring constant of the hydrogen bond,
E0 is the energy of the C=O stretching and W is the total energy of the peptide group
displacements. The constant J measures the energy of the dipole–dipole interaction of C=O
stretching oscillations and χ is a quadratic force constant for the exciton–phonon nonlinear
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coupling. In the case of the Davydov–Scott [11, 12] approach, χ becomes a cubic force
constant which indicates how strongly chain distortion will trap localized vibrational energy.
An overdot stands for derivation with respect to the physical time T.

Upon defining the dimensionless time t = JT /h̄, and the adimensional quantities

�n = an

h̄χ

J
√

JM
exp

[ i

J
(E0 + W − 2J )t

]
, Qn = χ

J
(βn+1 − βn), (3)

the system becomes

i∂t�n + (�n+1 − 2�n + �n−1) = Qn�n, (4)

∂2
t Qn − V 2(Qn+1 − 2Qn + Qn−1) = |�n+1|2 − 2|�n|2 + |�n−1|2, (5)

which constitutes our basic example of a discrete nonlinear coupled wave system of equations.
Note that we are left with a single constant, the adimensional sound velocity

V = h̄

J
vp, vp =

√
κ

M
, (6)

where vp is the phonon velocity (cells per second), and that the coupling parameter χ has been
absorbed in the amplitude of ψn(t).

2.2. Multi-scale expansion

Following the multi-scale expansion method [16] we assume a representation of the solution
{�n(t),Qn(t)} as a formal series in terms of a small parameter ε where space–time
dependences occur at a sequence of slow scales. Since it is not necessary to push the series at
arbitrary order, we write explicitly the first relevant terms only as

�n(t) = εϕ(0)(n0, x1, . . . ; t0, t1, . . .) + ε2ϕ(1)(n0, x1, . . . ; t0, t1, . . .) + · · · (7)

Qn(t) = εq(0)(n0, x1, . . . ; t0, t1, . . .) + ε2q(1)(n0, x1, . . . ; t0, t1, . . .) + · · · (8)

and the difference-differential operators must be understood as

∇±
n → ∇±

n0
+ ε∂x1 + · · · , ∂t → ∂t0 + ε∂t1 + · · · . (9)

Hereabove the difference operators are defined as

∇+
n�n = �n+1 − �n, ∇−

n �n = �n − �n−1, (10)

such that the second-order difference appearing in (4) is

∇2
n�n = ∇+

n∇−
n �n = �n+1 + �n−1 − 2�n. (11)

The system (4), (5) at first order gives the linear equations

L0ϕ
(0) = 0, L0 = i∂t0 + ∇2

n0
,

L0q
(0) = 0, L0 = ∂2

t0
− V 2∇2

n0
.

(12)

The next order ε2 eventually reads

L0ϕ
(1) = −i∂t1ϕ

(0) − (∇+
n0

+ ∇−
n0

)
∂x1ϕ

(0) + q(0)ϕ(0),

L0q
(1) = 2∂t0∂t1q

(0) + V 2
(∇+

n0
+ ∇−

n0

)
∂x1q

(0) + ∇2
n0

|ϕ(0)|2. (13)

The method then works as follows. Once an explicit solution of the linear system (12) is
selected, we express that the evolution (13) of the first-order correction

{
ϕ(1)

n , q(1)
n

}
must not

produce secular growth. This explicitly furnishes the evolution of the fundamental
{
ϕ(0)

n , q(0)
n

}
in the slow variables x1 and t1. The choice of the linear solution in the variables n0, t0
determines the physical problem under study.
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2.3. Selection rules

To describe a three-wave interaction process involving incident and backscattered optical
phonon waves, we are led to select in the linear system (12) the solution

ϕ(0) = A(x1, t1) ei(k1n0−ω1t0) + B(x1, t1) ei(−k2n0−ω2t0), (14)

q(0) = g(x1, t1) ei(Kn0−
t0) + ḡ(x1, t1) e−i(Kn0−
t0), (15)

with wave numbers k1 > 0 and k2 > 0 such as to ensure an optical phonon wave as a
superposition of an incoming wave of amplitude A and a reflected wave of amplitude B. The
acoustic wave can propagate in both directions, thus K can be of either sign. We have explicitly
written the variables (x1, t1) in the slowly varying amplitudes A,B and g, but of course they
depend on all higher order variables (but not on the first order ones n0 and t0). The above
expression is a solution of (12) for the following dispersion relations:

ω1 = 2(1 − cos k1), ω2 = 2(1 − cos k2), 
 = 2V

∣∣∣∣sin
K

2

∣∣∣∣ . (16)

Note that using the relation (3) and the multi-scale derivative laws, we demonstrate that
the first-order envelope β0 of the longitudinal displacement along the hydrogen-bond chain βn

is related to the envelope g(x1, t1) of Qn by

β0(x1, t1) = −i
J

2χ sin(K)
g(x1, t1) (17)

then the behaviour of the envelope g(x1, t1) will automatically give the behaviour of β0(x1, t1).
The resonant wave interaction results from a selection rule for the wave parameters,

obtained by examination of the nonlinear terms that occur in (13), namely

q(0)ϕ(0) = Ag ei(k1+K)n0 e−i(ω1+
)t0 + Aḡ ei(k1−K)n0 e−i(ω1−
)t0

+ Bg ei(−k2+K)n0 e−i(ω2+
)t0 + Bḡ ei(−k2−K)n0 e−i(ω2−
)t0 .

Such terms will combine to either components of ϕ(0) and resonate with corresponding factors
in the left-hand side of (13). The evolution of the envelopes will then be obtained by setting
to zero the coefficients of resonating terms.

Since the physical context is the resonant interaction of two HF-waves (optical phonon)
with a LF acoustic wave, it implies a small value of K (near the centre of the Brillouin zone)
and large values of k1 and k2, that is to say close to, but less than, the value π in order to
achieve incident and reflected HF-waves. We are then left with the following selection rules.
First when the nonlinear terms Ag and Bḡ combine respectively with B and A we get

k1 + k2 = 2π − K, K > 0, ω1 − ω2 = −
. (18)

Another possibility is to combine instead Aḡ and Bg with B and A to obtain

k1 + k2 = 2π + K, K < 0, ω1 − ω2 = 
. (19)

We shall study these two cases and demonstrate that only the first one gives an instability that
generates solitons, displayed in figure 1.

It is worth remarking that such a scattering process (involving 2π ) is allowed for by the
presence of an exponential in the discrete variable (n0), in other words by the discrete nature
of the medium.

Inserting the dispersion relations (16) in equation (18), we obtain after some algebra the
following solution:

2 sin(k1 + K/2) = V, 2 sin(k2 + K/2) = −V. (20)
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Figure 1. Representation of the selection rules (18) (V = 0.5) and graph of solution (20).

These equations determine completely the wave numbers k2 and K from the data of V (physics)
and k1 (incident wave), as soon as one assumes that k1 and k2 are close to and less than π . The
relations (20) can be expressed in terms of molecular chain parameters (using the dispersion
relations (16) and the rescaling time defined before ) and give the set of optimal properties to
display nonlinear absorption.

Note that this is enough to give the physical parameters V (related to the mass, the dipole
interaction constant and force constant ) and K which is directly related to the frequency
of the phonon mode involved in the coupling process. We then obtain the high frequency
modes which could interact to obtain nonlinear absorption. In another way, we can impose the
frequency of excitonic modes and look for parameters of the chain needed to obtain a resonant
process.

Remark. A particular case is obtained in the limit K → 0 for which k2 → −k1 and
2 sin(k1) = V . This is the two-wave resonant interaction studied in [13] for which a different
multi-scale analysis has to be employed (resonant process occurs at larger scales).

2.4. Three-wave resonant interaction

Corresponding to the first selection rule (18), the evolution equations for the envelopes that
ensure vanishing of the resonant terms in the evolution (13) read

[∂t + 2 sin k1∂x]A = −iBḡ,

[∂t − 2 sin k2∂x]B = −iAg,[
∂t − V 2 sin K



∂x

]
g = i




2V 2
BĀ.

(21)

From now on we rename x1 by x and t1 by t. The same procedure applied to the second
selection rule (19) eventually furnishes

[∂t + 2 sin k1∂x]A = −iBg,

[∂t − 2 sin k2∂x]B = −iAḡ[
∂t − V 2 sin K



∂x

]
g = i




2V 2
AB̄.

(22)
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These are two standard three-wave interaction nonlinear evolutions which are integrable
systems on the infinite line x ∈ R when Cauchy initial data are prescribed in a space of
functions vanishing (together with all their derivatives) at x → ±∞ [17].

Such an initial-boundary value problem is not the one we are interested in as indeed we
study the scattering of an incident HF wave of envelope A(x, t) having a prescribed value
for all time t at the origin of the medium, i.e. at x = 0. Moreover, as B(x, t) stands for the
envelope of the reflected wave, its value will be prescribed to vanish at the output x = L for all
time. Thus we cannot make use of the inverse scattering transform, unless first reformulated
for a boundary-value problem on the finite interval, which is still an open problem.

Note that the system (22), by renaming g as ḡ, maps to the first one except for the sign
of the inhomogeneous term of the last equation. This change of sign is fundamental as it
switches from instability to stability, as described below.

2.5. Stability properties

The problem we consider is thus the scattering of an incident HF wave of envelope A(x, t),
belonging to a carrier wave of frequency ω1, that generates a backscattered wave of envelope
B(x, t) and LF acoustic wave of envelope g(x, t) out of initial vacuum. Thus we perform a
linear stability analysis of both systems about the solution

A(x, t) = Ac, B = 0, g = 0 (23)

with constant Ac corresponding to a continuous wave (CW) irradiation. Mathematically
speaking this is an exact solution of both systems (21) and (22) and thus only an instability
could produce an effective scattering. Let us seek now a solution as the perturbation

A = Ac + εa e−iνt , B = εb e−iνt , g = εq e−iνt . (24)

The system (21) at order ε then gives the linear system
ν 0 0

0 ν Ac

0 −Āc



2V 2 ν





a

b

q


 = 0 (25)

possessing the three eigenvalues ν = 0 and ν = ±i(|Ac|/V )
√


/2. The system is thus
unstable (
 > 0), while the same analysis with system (22) and g = εq eiνt furnishes the real
eigenvalues 0 and ±(|Ac|/V )

√

/2, and thus stability.

Consequently the linear stability analysis predicts that the selection rule (18) will produce
an effective scattering for an incident CW wave. Our purpose now is to demonstrate by
numerical simulations that this instability is a soliton generator which induces an effective
energy absorption of the incident radiation.

3. Numerical simulations

In order to understand the effect of the instability of the solution (23) in system (21), and
compare it to system (22), we perform here numerical simulations of those systems under the
following initial-boundary value data on the interval x ∈ [0, L]:

A(0, t) = Ac, B(L, t) = 0, g(x, 0) = 0. (26)

As an illustration figure 2 shows the energy density profile |A(x, t)|2 of the incident wave as
a function of x at time t = 20 for Ac = 0.7. The dashed line represents the acoustic phonon
|g(x, t)|2 that has gained the energy lost by the incident optical phonon.



Nonlinear absorption in discrete systems 9107

0

0.5

1

50 100
n

ene
rgy

 de
nsi

ty

Figure 2. Energy density at time t = 20 for optical phonon wave |A(x, t)|2 (solid line) and
|g(x, t)|2 (crosses).
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Figure 3. Energy of the optical phonon wave I (t) for Ac = 0.7 and the values of (29).

This process corresponds to a brutal transfer of energy from the incident wave (which has
already settled in the medium) to the medium, as shown in figure 3. The normalized energies
carried by the waves of envelopes A and g are defined by

I (t) = 1

L
∣∣A2

c

∣∣2

∫ L

0
dx|A(x, t)|2, (27)

P(t) = 1

L
∣∣A2

c

∣∣2

∫ L

0
dx|g(x, t)|2. (28)

These are the quantities evaluated in a numerical simulation in figure 3 for the following
parameters:

ω1 = 3.94, k1 = 2.89,

ω2 = 3.98, k2 = 2.99,

V = 0.1, 
 = 0.04, K = 0.4.

(29)

Performing the same numerical simulations in the case of system (22) has never produced
any nonlinear energy transfer, confirming the predictions of the linear stability analysis.
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4. Conclusion

We have shown that a molecular chain allowing for a wave coupling process, like the Davydov
model, can present nonlinear energy absorption by resonant interaction, coupling HF to LF
waves, with selection rules (18) that are allowed only in discrete systems.

The resulting governing equation, though integrable (for a Cauchy initial value problem
on the infinite line) leads to an instability when driven by boundary data on the finite interval.
This instability is then the source of soliton formation in the medium, and energy transfers
from the incident radiation to the medium excitation.

This process is clearly illustrated by numerical simulations and opens the way to further
studies in different contexts where the discreteness is known a priori to play a fundamental
role.
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[2] Drühl K, Wenzel R G and Carlsten J L 1983 Phys. Rev. Lett. 51 1171
[3] Claude C and Leon J 1995 Phys. Rev. Lett. 74 3479

Leon J and Mikhailov A V 1999 Phys. Lett. A 253 33
[4] Caputo J-G, Leon J and Spire A 2001 Phys. Lett. A 283 129
[5] Geniet F and Leon J 2002 Phys. Rev. Lett. 89 134102
[6] Leon J 2003 Phys. Lett. A 319 130
[7] Geniet F and Leon J 2003 J. Phys.: Condens. Matter 15 2933
[8] Yariv A 1991 Optical Electronics 4th edn (Orlando, FL: Saunders)
[9] Sankey N D, Prelewitz D F and Brown T G 1992 Appl. Phys. Lett. 60 1427

[10] Leon J and Spire A 2004 Phys. Lett. A 327 474–80
[11] Davydov A S 1985 Solitons in Molecular Systems (Dordrecht: Reidel)
[12] Scott A C 1992 Phys. Rep. 217 1
[13] Boiti M, Leon J, Pempinelli F and Spire A 2004 J. Phys. A: Math. Gen. 37 4243
[14] Benney D J 1977 Stud. Appl. Math. 56 81
[15] Kopidakis G, Soukoulis C M and Economou E N 1995 Phys. Rev. B 51 15038
[16] Whitham G B 1974 Linear and Nonlinear Waves (New York: Wiley-Interscience)
[17] Kaup D J 1976 Stud. Appl. Math. 55 9


